姓名 鞠恒荣 职称 副教授
个人简介
男,江苏泰兴人,博士研究生,国家公派加拿大University of Alberta联合培养博士,中国计算机学会会员、中国人工智能学会会员、中国人工智能学会粒计算与知识发现专业委员会委员。
专业研究领域
主要从事粒计算、知识发现、数据挖掘等方面的研究工作。
专著与论集
学术著作:
杨洁, 鞠恒荣, 王国胤, 张清华著. 不确定性问题的多粒度建模与决策方法, 北京:科学出版社, 2023.
学术论文
[1] Ju, H., Ding, W., Yang, X., & Gu, P. (2023). Bi-directional adaptive neighborhood rough sets based attribute subset selection. International Journal of Approximate Reasoning, 108966.
[2] Ding, W., Wang, H., Huang, J., Ju, H., Geng, Y., Lin, C. T., & Pedrycz, W. (2023). FTransCNN: Fusing Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation. Information Fusion, 101880.
[3] Zhang, J., Liu, K., Yang, X., Ju, H., & Xu, S. (2023). Multi-label learning with Relief-based label-specific feature selection. Applied Intelligence, 1-14.
[4] Huang, J., Wang, M., Ju, H., Shi, Z., Ding, W., & Zhang, D. (2023). SD-CNN: A static-dynamic convolutional neural network for functional brain networks. Medical Image Analysis, 83, 102679.
[5] Ju, H., Ding, W., Shi, Z., Huang, J., Yang, J., & Yang, X. (2022). Attribute reduction with personalized information granularity of nearest mutual neighbors. Information Sciences, 613, 114-138.
[6] Ding, W., Sun, Y., Li, M., Liu, J., Ju, H., Huang, J., & Lin, C. T. (2022). A Novel Spark-Based Attribute Reduction and Neighborhood Classification for Rough Evidence. IEEE Transactions on Cybernetics.
[7] Ding, W., Qin, T., Shen, X., Ju, H., Wang, H., Huang, J., & Li, M. (2022). Parallel incremental efficient attribute reduction algorithm based on attribute tree. Information Sciences, 610, 1102-1121.
[8] Liu, K., Li, T., Yang, X., Ju, H., Yang, X., & Liu, D. (2022). Hierarchical neighborhood entropy based multi-granularity attribute reduction with application to gene prioritization. International Journal of Approximate Reasoning, 148, 57-67.
[9] Ba, J., Liu, K., Ju, H., Xu, S., Xu, T., & Yang, X. (2022). Triple-G: a new MGRS and attribute reduction. International Journal of Machine Learning and Cybernetics, 13(2), 337-356.
[10] Ju, H., Ding, W., Yang, X., Fujita, H., & Xu, S. (2021). Robust supervised rough granular description model with the principle of justifiable granularity. Applied Soft Computing, 110, 107612.
主要科研项目
主持国家自然科学基金项目1项,江苏省高校自然科学基金面上项目1项,南通市科技局基础研究项目1项,入选江苏省双创博士计划。参与中央军委装备发展部“十三五”重点项目、国家自然科学基金面上项目、江苏省高校自然科学基金等项目多项。
讲授课程
机器学习(本科生)
模式识别(本科生)
数据挖掘与知识发现(研究生)
离散数学(留学生全英文授课)
指导研究生情况
2023级硕士研究生:3人
2022级硕士研究生:3人
2020级硕士研究生:1人